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Abstract: Typhoid fever is an infectious disease caused by salmonella typhi. We formulate a mathematical 

modeling of transmission dynamics of typhoid using non-linear ordinary differential equations, in order to 

understand how the disease is spread and to predict the future behaviour of the model. Epidemiological 

threshold, R0, which is the condition for the disease spread is calculated. We obtain the disease-free equilibrium 

which is locally and globally stable respectively. The local stability of the endemic equilibrium of the model is 

also obtained. 
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I. Introduction 
Typhoid fever is an infectious disease caused by the bacterial salmonella typhi. It is transmitted to 

human by taking the food or water contaminated by the urine or faeces of an infected human or carriers. 

Globally it is estimated that typhoid causes over 16 million cases of illness each year, resulting in over 600,000 

deaths [3]. While improvements in water and sanitation led to the elimination of typhoid from most developed 

countries during the twentieth century, the global burden of typhoid fever has recently been estimated to be 

between 13.5 and 26.9 million episodes and 190,000 to 216,000 deaths annually. [1]. 

 Getachew et al (2017) modelled an optimal control of typhoid fever disease with cost-effective 

strategies without considering the effect of non-drug compliance in the human population. In their model, they 

took into consideration sanitation, proper hygiene and vaccination as their control strategies. 

 Nthiiri et al. formulated a mathematical model based on system of ordinary differential equations to 

study the dynamics of typhoid fever incorporating protection against infection. They obtained the existence of 

steady states of the model and basic reproduction number. They carried out stability analysis of their model to 

determine the conditions that favour the spread of the disease in a given population. They also performed  

numerical simulation of their model, which showed that an increase in protection led to disease prevalence in a 

population. 

 Various papers have been written on mathematical modeling of typhoid recently without considering 

the effect of non-drug compliance on the spread of the disease. Non-drug compliant human are those who are 

given medication by their doctors but do not take it as prescribed.In view of the above, we formulate a 

deterministic model to investigate the effects of non-drug compliance on transmission dynamics of typhoid. The 

model also takes into consideration health education as a control strategy of non-drug compliant humans. 

 

II. Model Formulation 
The model sub-divides the total human population denoted by NH, into subpopulations of susceptible 

human (SH), Infected human (IH), carriers (CH), Non-drug Compliant Human (INH) and Recovered Human (RH). 

 

2.1 Assumptions of the Model  

The following assumptions were made in order to formulate the equations of the model: 

a) Some infectious human who take their drug as prescribed by their doctors get treated fully and move to 

the recovered compartment  

b) Some infectious human who do not take their drug as prescribed by their doctors get treated partially 

and move to the non-drug compliant human compartment. 

Hence, we have the following differential equations: 
𝑑𝑠𝐻

𝑑𝑡
 = ⋀H - 

𝛼𝐶𝐻𝑆𝐻

𝑁𝐻
 +φRH - 𝜇𝐻𝑆𝐻     ----------- (2.1)  

𝑑𝐼𝐻

𝑑𝑡
 =  

𝛼𝐶𝐻𝑆𝐻

𝑁𝐻
 - 𝜎IH -ω𝛽𝐼𝐻– 𝜏IH - 𝜇𝐻𝐼𝐻    ----------- (2.2) 

𝑑𝐼𝑁𝐻

𝑑𝑡
 = (1 – 𝜌)𝜏IH-𝑟𝜏INH-𝜇𝑁𝐼𝑁𝐻 - 𝜇𝑁𝐼𝑁𝐻   ----------- (2.3) 
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𝑑𝐺𝑡

𝑑𝑡
 = ω𝛽IH – ϒCH – 𝜎CH - 𝜇𝐻𝐶𝐻   ----------- (2.4) 

𝑑𝑅𝐻

𝑑𝑡
 = 𝜌𝜏𝐼H - φ𝑅𝐻  + 𝑟𝜏INH + ϒ𝐶𝐻  - 𝜇𝐻𝑅𝐻  ----------- (2.5) 

where r = education on drug use  

𝛽 = rate of progression from infective to carrier 

𝛾 = recovery rate 

φ = loss of immunity rate 

𝛼 = rate of infection  

r = typhoid fever-induced death  

𝜏 = drug  

ω = fraction of symptomatic typhoid patients who become carriers 

⋀H = recruitment rate 

𝜇H = natural death rate  

𝜇N = death due to non-drug compliance  

𝜌 = proportion of infected human with drug compliance  

(1 - 𝜌) = proportion of infected human with non-drug compliance  

 

III. Model Analysis 
3.1 Local Stability of Disease-Free Equilibrium  

It could be seen that the disease free equilibrium of the model is locally stable. In the absence of 

infection, the model reduces to  
𝑑𝑆𝐻

𝑑𝑡
 = ⋀H + φRH - 𝜇𝐻𝑆𝐻      ----------- (3.1)  

𝑑𝑅𝐻

𝑑𝑡
 = -  (φ + 𝜇𝐻)RH      ----------- (3.2)  

The disease free equilibrium points of (3.1) – (3.2) is E0 =  
⋀𝐻

𝜇𝐻
, 0  

We next solve the system (3.1) – (3.2)  

From (3.1), 
𝑑𝑅𝐻

𝑑𝑡
 = -  (φ + 𝜇𝐻)RH  

RH = Aℯ−  (φ + 𝜇𝐻
)t
.ℯC

 = Aℯ−(φ + 𝜇𝐻
)t 

Then RH = RH
0
Aℯ−  (φ + 𝜇𝐻

)t
 where RH(0) = RH

0 

Also, SH = 
⋀𝐻

𝜇𝐻
 – RH

0
Aℯ−  (φ + 𝜇𝐻

)t
 + (SH

0
 - 

⋀𝐻

𝜇𝐻
 + RH

0
) ℯ−𝜇𝐻t 

where SH(0) = SH
0
. 

This shows that the recovered and susceptible population converge to their equilibrium solution  
⋀𝐻

𝜇𝐻
, 0  as t 

increases. Hence the disease-free equilibrium is locally stable.  

 

3.2 Reproductive Number (R0) 

Reproductive number is calculated in order to know whether the disease dies out of the population or 

persists in the population. If R0< 1, then the disease dies out of the population, but if R0> 1, the disease persists 

in the population. Reproductive number is the number of secondary infectious humans that are infected by a 

primary infectious one in a susceptive population. But before we calculate R0, we shall scale our model in terms 

of proportion of quantity rather than actual population. Hence we have the transformation; 

Sh = 
𝑆𝐻

𝑁𝐻
; ih = 

𝐼𝐻

𝑁𝐻
; inh = 

𝐼𝑁𝐻

𝑁𝐻
; ch = 

𝐶𝐻

𝑁𝐻
; rh = 

𝑅𝐻

𝑁𝐻
. 

Differentiating the fraction with respect to time t gives  
𝑑𝑠ℎ

𝑑𝑡
 =𝜆h(1 – sh) – 𝛼chsh + φ 𝑟ℎ  + 𝜎sh (ch+ih) + 𝜇Nshinh    ---- (3.3) 

𝑑𝑖ℎ

𝑑𝑡
 =𝛼chsh – (𝜎 +  𝜔𝛽 +  𝜏 + 𝜆h )ih + 𝜎𝑖2

h +𝜎chih + 𝜇Nihinh   ---- (3.4) 

𝑑𝑖𝑛ℎ

𝑑𝑡
 = ( 𝜏 −  𝜌𝜏) ih – (r𝜏 + 𝜆h)inh + 𝜎inh (ih + ch)     ---- (3.5) 

𝑑𝑟ℎ

𝑑𝑡
 = 𝜌𝜏 ih – (φ + 𝜆h) rh + r𝜏inh + (ϒ + 𝜎ch)ch + 𝜎rhih +𝜇Nrhinh   ---- (3.6) 

where E0 is obtained by setting the right-hand side of (3.3) – (3.6) to zero. This implies that E0 = (1, 0, 0, 0). 

The reproductive number is obtained by expressing (3.3) – (3.6) as the difference between the rate of new 

infection in each infected compartment F and the rate of transfer between  each infected compartment G. 

Therefore, R0 is the maximum eigenvalue of D given as R0 = 
𝜔𝛼𝛽

𝐴𝑇𝑏𝑡
 where  

AT = 𝜎 + 𝜔𝛽 +  𝜏 + 𝜆h and bt = 𝛾 + 𝜎 + 𝜆h. 
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3.3 Global Stability of disease-free equilibrium  

Theorem1: The disease-free equilibrium E0 = (1,000) of (3.3) – (3.6) is globally stable if R0≤ 1 and unstable of 

R0> 1. 

Proof: Consider the Lyapunov function  

L = 𝜔𝛽ih + ATch 

L
1
 = 𝜔𝛽

𝑑𝑖ℎ

𝑑𝑡
 + AT

𝑑𝑐ℎ

𝑑𝑡
 

Further expression yields 

L
1
 = ATch (R0sh – 1) - 

1

𝑏𝑡
 (AT𝜎

2
ch + ATch𝜇𝑁inh – 𝜔𝛽𝜎i

2
h – ATih𝜎ch) ≤ ATch (Rtsh – 1) ≤ 0 if Rt ≤1 

Hence, this shows that the disease – free equilibrium is globally stable. 

 

3.4 Local Stability of endemic equilibrium  

We shall employ the following theorem stated and proved by Mccluskey and Van Driessche [5] to demonstrate 

the local stability of endemic equilibrium E1. 

Theorem2: Let M be a 4 x 4 matrix. If tr(M), det(M) and det (M
(1)

) are all negative, then all eigenvalues of M 

have negative real part. 

Proof: We first compute the Jacobian matrix of (3.3) – (3.6). i.e.  

JE = 

 
 
 
 
𝑟1              𝑟𝑠ℎ− Ø𝜇𝑁𝑠ℎ−Ø            − 𝛼𝑠ℎ+𝑟𝑠ℎ−Ø

𝛼𝑐ℎ𝑟2 𝜇𝑁𝑖ℎ                               𝛼𝑠ℎ

0          𝜏 − 𝜌𝜏 + 𝜎𝑖𝑛ℎ                 𝑟3
𝜎𝑖𝑛ℎ

0              𝜔𝛽 + 𝜎𝑐ℎ              − 𝜇𝑁𝑐ℎ𝑟4  
 
 
 

 

where 𝑟1 = - (𝜆h + 𝛼 ch + φ – rch – rih - 𝜇𝑁𝑖nh) 

𝑟2 = - AT + 2𝜎𝑖ℎ + 𝜎𝑐ℎ   + 𝜇𝑁𝑖nh 

r3 = - (r𝜏 + 𝜆h – 𝜎ih – 𝜎ch) 

r4 = -(𝜆h – 𝜎ih + ϒ + 𝜎+ 2𝜎ch + 𝜇𝑁𝑖nh) 

From the Jacobian matrix, the first additive compound matrix employed in [Mouldowrey, (1990), L1 et al. 

1995)] is given by 

[1] 

𝐽𝐸
[1]

 =  

− 𝐴 −  𝜇𝑁𝑖𝑛ℎ        0          0           0

0        −  𝛽 − 𝜇𝑁𝑖𝑛ℎ      0              0
0        0           − 𝐶                              0

0          0         0           − (𝐷 +  𝜇𝑁𝑖𝑛ℎ  )

  

From the Jacobian matrix and the first additive compound matrix, we have  

det(𝐽𝐸1) = -(𝜆h – φ ch –φinh + φ (1 – ih)  −
𝛼𝑠ℎ 𝑐ℎ +𝜎𝜏ℎ

2

𝑠ℎ 𝑐ℎ 𝑖𝑛ℎ
  

showing that the endemic equilibrium E1 is locally stable. 

 

IV. Conclusion 
The formulated model predicted the reduction of the non-drug compliant humans as well as other 

disease classes by using education (r), as a control strategy. The effect of non-drug compliance on transmission 

of typhoid suggested that non-drug compliance may increase the spread of typhoid. Therefore, education control 

strategy (r) should be adopted for typhoid infection. 
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